

Asian Research Consortium

Asian Journal of Research in Social Sciences and Humanities Vol. 11, No. 6, June 2021, pp. 1-27.

ISSN 2249-7315 A Journal Indexed in Indian Citation Index DOI NUMBER: 10.5958/2249-7315.2021.00016.2 Asian Journal of Research in Social Sciences and Humanities

www.aijsh.com

PREDICTION OF NUMBER OF CASES AND DEATHS DUE TO THE SECOND WAVE OF COVID-19 USING ARIMA MODEL FOR MAY 11-JUNE 30, 2021: A STUDY ON INDIA AND ITS MAJOR STATES

Ramesh Chandra Das*

*Associate Professor, Vidyasagar University, West Bengal, INDIA Email id: ramesh051073@gmail.com

ABSTRACT

Background: The devastating spread of the novel coronavirus, named COVID-19, starting its journey from Wuhan Province of China on January 21st, 2020, has now further threatened lives of almost all the countries of the world in different magnitudes with its second, and somewhere third waves. Mostly the developed countries have been hit hard, besides the emerging countries like China, India and Brazil. The Indian major states are now highly affected by its second wave starting from Maharashtra and Kerala in early February 2021. The government of India as well as the state governments are struggling to arrest the situation. **Objectives:** The study aims to predict the number of cases in India and its severely impacted states like Maharashtra, Kerala, Karnataka, Tamil Nadu, Gujarat, Andhra Pradesh, Uttar Pradesh, West Bengal, Rajasthan and Delhi for the period May 11-June 30, 2021 and compares the predicted values with the actual values to judge its depth of severity and growth. Method: The study uses Box-Jenkins method of forecasting in an Autoregressive Integrated Moving Average (ARIMA) structure on the basis of the daily data published by the Government of India from February 1st to May 10th, 2021. Results: It is derived that India and its ten highly affected states will be facing the gloomy scenario in the number of cases and deaths in the coming 51 days. Tamil Nadu is an exception with regard to the number of deaths as its predicted deaths will be declining. India will reach around 3.87 crore of number of cases and 4.9 lacs of death on June 30. Maharashtra will be the leader in the

group keeping all the remaining states well behind in both the number of cases and deaths. Mass scale vaccination is recommended to save the people of country from the ill effects of the virus.

KEYWORDS: COVID-19; prediction; ARIMA, Box-Jenkins; mean difference.

INTRODUCTION

COVID 19 in its second- round outbreak has affected a list of countries from both the developed and developing countries with a greater severity due to, as the scientists claimed, its several times mutations. The countries such as England, United States, Brazil, Spain, France, South Africa etc. were badly hit in the early phase of the second round. Mostly the mutated forms such as Britain strain and African strain were responsible for this severity in its attack. But, since the last couple of months, India has been the worst hit country in the world. According to Rao (2020, September), in the National Herald, has mentioned that India has been the new epicenter of global pandemic. The effects of Britain strain and a deadly variant, Indian strain, have been identified as the central cause of the new spread in the sub-continent. The Lancet (2021, May) very recently opined in its editorial that there will be about one million death by 1st August, 2021. Several causes have been identified by the report for this massive death rates, out of which policy failure on the part of the government regarding vaccination and capacity buildings have been in the priority list. But it is not observable from the report the method through which the estimation is made. Further, having an average span of three to five months of the impact in the second round, the estimated figure for August may be too late. In addition to that, the report could not throw lights upon the consequent impacts across the major/highly affected states in India in terms of both the number of cases and number of deaths.

The present study under this backdrop aims to proceed for twin objectives. Objective 1 aims to predict the total number of incidences/cases and number of deaths for the period May 11, 2021 to June 30, 2021 for India as a whole and its ten highly affected states, Maharashtra, Karnataka, Kerala, Andhra Pradesh, Tamil Nadu, Gujarat, Uttar Pradesh, Rajasthan, West Bengal and Delhi. And Objective 2 tries to test whether the predicted average values are greater than the actual values for the number of cases and deaths for the same set of units to justify whether the country and its states are recovering from the pandemic.

Existing Literature

There have been a lot of studies in the existing literature that deal with the effect of different viruses and bacteria upon the people of Asia and Africa which show that the people of these regions are with high immunity base due to high magnitudes of hunger and poverty levels and hence they are least affected by bacteria and virus

like COVID 19 (Raja, 2008; Hoch, 2010; Barreiro, 2016; Curtis et al, 2020). But it is now proved wrong in case of COVID 19 and its different strains.

There have been some studies done in the recent past that made predictions of COVID spread and death rates for different countries and regions of the world. Das (2020) had made forecasting of incidences for the countries such as USA, UK, Italy, Spain, France, China and India for the period July 12-Septembert 11, 2020 and estimated that USA and India would face respectively 80 lakhs and 41 lakhs number of cases. The actual results were near the estimated results. Hernandez-Matamoros et al (2020) did the forecasting of COVID 19 for specific geographical areas, specific countries, or create a global model and showed that there was a relation between the virus spread and the different variables present in the countries, which belong to the same geographic region. Bayyurt and Bayyurt (2020) aimed to compose of forecasting model to predict the spread of COVID-19 in Italy, Spain and Turkey in an ARIMA structure and the results showed, while number of cases in Italy and Spain was expected to decrease as of July, in Turkey was expected to decline as of September. Further, the number of deaths in Italy and Spain was expected to be the lowest in July and highest for Turkey in July. In a recent study, Malki et al (2021) developed a predictive model to estimate the expected period that the virus could be stopped and the risk of the second rebound of COVID-19 pandemic using a SARIMA model on several selected countries and showed the expected COVID-19 infections for the top countries of the highest number of confirmed cases would be manifested between December-2020 and April-2021. Further, the study forecast that there might be a second rebound of the pandemic in a year time if the currently taken precautions were eased. There are a few more studies in the list that could be added. But no study except the report of The Lancet (2021) has focused upon the new epicentre, India, and its states, to predict the number of cases and deaths in the coming two months around. The present study aims to accept the venture and makes predictions of number of cases and deaths for India and its ten major states in terms of spread for the period May 11-June 30, 2021 and to compare the mean values of the predicted with that of the actual to judge whether the situation is improving.

Data

The data on number of cases and deaths for India are obtained from the WHO database and for the states they are from India Government Database (www.mygov.in) for the date 01.02.2021 to 10.05.2021. There are ten highly affected states considered for the study which are Maharashtra, Karnataka, Kerala, Andhra Pradesh, Tamil Nadu, Gujarat, Uttar Pradesh, Rajasthan, West Bengal and Delhi. These states constitute around 75% of the total number of COVID cases in all India level for the selected period of the study.

Methodology for Objective 1

There are several methods of forecasting of a variable available in the literature of natural as well as social sciences. The present study uses the Box-Jenkins (1976) method of forecasting in an Autoregressive Moving Average (ARMA) framework which is a widely used method in forecasting variables in economic science. The period of prediction is taken to be 11.05.2021-30.06.2021, a 51-foreword time point.

Box-Jenkins's (B-J) method is a linear structure model which traces all the past values of the variables and their stochastic components to predict the values for all the future periods. Before to proceed for forecasting we need to have the idea on how a time series data of a particular variable is generated'. There are three such processes behind the unit of a time series data-

- **1.** AR (autoregressive) Process: Here, the past values of the variable and error term lead to the generation of the data.
- **2.** MA (moving average) Process: Here, only the errors or the disturbance term generate the data, no values of the variable under concern is taken into consideration.
- **3.** ARMA (autoregressive and moving average) Process: Here the data is generated by the combination of AR and MA processes which is both the past values of the variable and the error term.

Any time series of a variable has its own order of integration, that is, how many differences are to be taken to convert the series into the stationary series. For example, if the series is differenced once then it is called integrated of order one or I(1). Hence, the ARMA model is modified to ARIMA model where 'I' stands for the order of Integration of the series or how many differencing is done for making the time series of the variable to be stationary.

An AR (p) process is one where the current or present period's value of a variable 'x' depends on only the past values plus an error term. If there are 'p' order in the process i.e. current value of 'x' depends on the 'p' order of past (e.g. t-1, t-2, etc.) values and an error term of the current period then the AR(p) can be written as-

$$x_{t} = \mu + \varphi_{1}x_{t-1} + \varphi_{2}x_{t-2} + \varphi_{3}x_{t-3} + \varphi_{4}x_{t-4} + \dots + \varphi_{p}x_{t-p} + u_{t} = \mu + \Sigma \varphi_{i}x_{t-i} + u_{t} \dots (1)$$

whereutis the white noise (WN) error term havingzero mean, constant variance and zero auto-covariance features.

On the other hand, an MA(q) process, is the linear combination of all the q terms of the past values of the white noise terms depending on time. It is a white noise process in which the current value of ' x_t ' depends on the current value of the WN error term and all past values of the error terms. Because all the errors are WN, the

combination of all plus and minus values of the errors hover around the value zero, so, an MA process is necessarily a stationary process.

Therefore, an MA (q) process can be written as-

$$x_{t} = u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + \theta_{4}u_{t-4} + \dots + \theta_{q}u_{t-q} = u_{t} + \Sigma \theta_{i}u_{t-i} \dots (2)$$

An AR process becomes stationary if the characteristic root lies outside the unit circle or having the values greater than unity. If it is so then then φ becomes less than 1. This means the condition φ <1 leads to the values lying inside the unit circle representing stationarity of the AR process, the model is thus having stability property. The AR coefficients should then be less than unity or they should lie within the unit circle.

An ARIMA (p, q) process is the combination of AR and MA process, I being the order of integration which can be represented by 'd', number of differencing to convert the series from non-stationary to stationary. The model for ARMA (p, d, q) can then be written as-

$$x_{t} = \mu + \varphi_{1}x_{t-1} + \varphi_{2}x_{t-2} + \varphi_{3}x_{t-3} + \varphi_{4}x_{t-4} + \dots + \varphi_{p}x_{t-p} + u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + \theta_{4}u_{t-4} + \dots + \theta_{q}u_{t-q}$$

Using the Lag operator, we have

$$(1 - \varphi_1 L - \varphi_2 L^2 - \varphi_3 L^3 - \varphi_4 L^4 - \dots - \varphi_p L^p) x_t = \mu + (1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 + \theta_4 L^4 + \dots + \theta_q L^q) u_t$$

$$Or, \ \varphi \ (L) x_t = \mu + \theta \ (L) u_t$$
(3)

This relation (3) stands for invertibility between the AR and MA process which means AR and MA processes can be made invertible from one to the other.

Unit Roots Test of Stationarity-the Augmented Dickey-Fuller (ADF) Test

For a data set $(x_{i,t}, i = 1, 2, ..., n \text{ and } t = 1, 2, ..., T)$, where t denotestime, let us consider the following linear regressionset up for unit root test for two versions of the ADF(p)(1979) regression-viz.,

$$\Delta x_{i,t} = \alpha + \beta_i x_{i,t-1} + \sum \gamma_{i,j} \Delta x_{i,t-j} + u_{i,t}$$

$$j = 1$$
.....(4)

for the without time trend case and

$$\Delta x_{i,t} = \alpha + \delta_i t + \beta_i x_{i,t-1} + \sum_{j=1}^p \gamma_{i,j} \Delta x_{i,t-j} + u_{i,t}$$
.....(5)

for the itme trend case.

If $\beta_i = 1$ is rejected by the ADF test statistic then we say that the series for the ithidentity is stationary. If this property holds for the series for 'x' then we can run regression without the chances of getting spurious results.

Forecasting in ARIMA Model: Box-Jenkins Method

The B-J model experiences several sub-models and it is thus required to determine which model is appropriate. It is thus an iterative process. The entire procedure follows four-steps:

Step 1: Identification: Here the appropriate values of p, d, and q are determined.

➤ The main tools in this search are the correlogram and partial correlogram where the values of autocorrelation coefficients (ACF) and partial autocorrelation coefficients (PACF) are generated. A steady declining trend of ACF indicates non stationary nature of the series. The appropriate values of ACF and PACF at different lags having spikes are considered as the possible combinations of the orders of AR and MA respectively. For example, if ACF has a spike at lag 3 and after that it dies out then the order of AR is 3, or the model becomes AR(3). Again, if PACF has the spike at lag 4 after that it dies out then it is called MA(4). Further, if the series is I(2) then the appropriate ARIMA will be of order (3,2,4). There can be more than one such spikes in both the cases and so we need to select the appropriate one by means of diagnostic checking.

Step 2: Estimation: Herethe parameters of the chosen model on AR and MA and a constant term are estimated using the ordinary least square (OLS) technique.

Step 3: Diagnostic Checking: In this step it is proceeded to check if the residuals from the fitted models are white noise. It is based on the statistical significance of the estimated values of AR and MA terms (following Step 2), the values of adjusted R square (which should be maximum), and lowest possible values of the information criterion such as Akaike Information Criteria (AIC) and Swartz Information Criteria (SIC).

If they satisfy all the above, then we accept the chosen model; if not, we start afresh. That is why the BJ methodology is an iterative process.

Step 4: Forecasting: The ultimate test of a successful ARIMA model lies in its forecasting performance, within the sample period as well as outside the sample period. On the basis of the acceptable results obtained from Step 1 to 3, forecasting is made on the appropriate model of ARIMA. The forecasting results are accepted on the basis of the acceptable values of root mean square error (RMSE), bias proportion, variance proportions and covariance proportions. The acceptable forecasted values will be those whose RMSE will be minimum possible and

covariance proportions will be greater than the values of bias proportions and variance proportions.

Methodology for Objective 2

The test statistics for examining whether there are significant increases or decreases in the numbers of cases and deaths of the predicted values vis-à-vis the corresponding actual values in India and across its states is the student t statistics.

The formula for t statistics for the mean difference is-

$$t = (\mu_p - \mu_a)/\sqrt{(S_p^2/n_p + S_a^2/n_a)}$$

with degrees of freedom (n_p+n_a-2) .

where ' μ ' stands for mean value for predicted (p) and actual (a). S² represents variance of the predicted and actual values.

Computation of Results, Analysis and Discussion

Before going for the computations of the predicted values of the number of cases and deaths we present graphically the actual numbers of the two indicators for the period 01.02.2021 to 10.05.2021 for India and the ten major states. Figure 1 to Figure 4 present the data.

Figure 1 and Figure 2 respectively present the actual as well as predicted number of cases and deaths respectively for India. The data for the predicted values in both the figures are marked in the figures. It is observed that both the total number of affected persons and death are increasing during the actual period, 01.02.2021 to 10.05.2021 but the trends took steep rising shape from the mid of April 2021. Starting with 1.076 crore in 01.02.2021 the number of total cases in India reached 2.29 crore in 05.10.2021, a jump of 113% during the 99 days duration.

Figure 1. Total Number of Actual and Forecast Cases in India

Source: Drawn by the author

On the other hand, total number of deaths in India (Figure 2) starts with 1.54 lacs in 01.02.2021 and reaches 2.46 lacs in 10.05.2021, a jump of 59 % for this 99-day phase. Although the rate of increase in number of deaths is less than that of the number of cases, the figure of 2.46 lacs is not a matter of joke so far as the human capital value of this dead population is concerned.

Figure 2. Total Number of Actual and Forecast Deaths in India

Source: Drawn by the author

Now come to the actual scenario of number of cases and number of deaths for the selected ten highly affected states in India. Figure 3 presents the data for number of incidences for the states. The total number of affected people has been increasing over the time for all the states. Unlike that of India, the severity in the increase starts from the late March for only Maharashtra, Delhi and Gujarat, but for rest of the states, the severity starts from the mid of April. But the level of incidence is much higher in Maharashtra compared to the other nine states. Maharashtra started with 20 lacs cases and ends with 51 lacs, a jump of 250 %. The states like West Bengal, Uttar Pradesh, Tamil Nadu and Kerala are now the highly affected states in India. Two causes are mentioned by the scientists, doctors and reports such as The Lancet (2021), Rao (2020), for the states. Except Uttar Pradesh, all the three states went through the assembly elections with no such restrictions for COVID protocol was imposed by the election commission of India. Most of the central level leaders from the BhartiyaJanta Party (BJP) including the Prime Minister, and the other political parties did lots of public rallies in an eight-phase election, particularly in West Bengal to throw out the ruling government, All India Trinamool Congress (AITMC), from the power. Although the political objective of the BJP was not fulfilled, the curse remained for the common people which showed the affected COVID cases of around 20000 per day. The Supreme Court of India and other High Courts did not miss to blame the central government and the Election Commission of India.

Source: Drawn by the author

The precarious situation of Uttar Pradesh has been identified by the reports as due to religious mass gathering like KumbhMela. According to a report in National Herald (www.https://www.nationalheraldindia.com) on May 4, 2021 that due to the Kumbh effect,60 out of 61 Kumbh returnees test positive for COVID in Madhya Pradesh.Besides all these causes, the continuity in air traffic flow, migrant labour movements, etc are identified as the other possible causes to support the data on incidence.

Now come to the scenario of number of deaths in the selected states. Figure 4 shows that Maharashtra is still with highest number of deaths in the entire period of actual data. Starting from 51000 total death in 01.02.2021, it ends up with 75000, which is a jump of 50% in the less than a three-and-a-half-month duration. The steep increasing trend for the state has started from the end of March like that in the number of cases.

Figure 4. Total Number of Actual Deaths in the States of India

Source: Drawn by the author

The other states in the list are also with increasing trends in the number of deaths. Maharashtra is followed by Tamil Nadu, Delhi, Uttar Pradesh, Karnataka and West Bengal. Rajasthan is at the bottom level in both the number of cases and number of deaths. Most of the states in the list except Maharashtra and Delhi have experienced steep rise in the trends during the mid of April.

Objective 1-Prediction of Number of Cases and Deaths for INDIA and Its States

Let us come to our true aim of research. We proceed for presenting the empirical results on the forecasting through the B-J method in step by step.

Step 1-3 of prediction

The results of first three steps of prediction for both the number of cases and deaths are presented respectively in Table 1 and Table 2. First, we come to the results of prediction of number of cases. Column 2 of Table 1 presents the values of the Augmented Dickey-Fuller (ADF) teststatistic (a popular procedure for testing stationarity of a time series data) to show the stationarity of the series and order of integration, column 3 gives all possible forms of ARIMA based on the shapes of ACF and PACF functions as derived from the respective correlograms, column 4 shows the regression results which determine the values of AR and MA terms, column 5 gives the values of adjusted R square and column 6 and 7 respectively show the values of AIC and SIC information criteria.

TABLE 1. UNIT ROOT TEST AND ARIMA RESULTS FOR NUMBER OF CASES

Groups	ADF	Possible forms	Regression Co-effs.		AIC	SIC
Groups		of ARIMA	(Prob)	$\bar{\mathbf{R}}^2$	inc	510
India	-4.29 (0.00)	(1,2,1)	AR(1) = 1.03 (0.00)	0.04	21.38	21.48
	I(2)		MA(1) = 0.99(0.00)			
		(1,2,7)	AR(1) = 0.13 (0.23)	0.40	21.30	21.38
			MA(7) = 0.78(0.00)			
		(7,2,1)	AR(7) = 1.03 (0.00)	0.45	21.58	21.68
			MA(1) = 0.64(0.00)			
		(7,2,7)	AR(7)=0.92(0.00)	0.54	21.07	21.11
			MA(7)= -0.03(0.82)			
		(14,2,7)	AR(14)=0.71(0.00)	0.54	21.16	21.24
			MA(7)=0.85(0.00)			
Maharashtra	-17.71(0.00)	(1,2,1)	AR(1) = -0.13 (0.37)	0.36	20.70	20.79
	I(2)		MA(1) = -0.62 (0.00)			
		(1, 2, 2)	AR(1) = -0.73(0.00)	0.36	20.70	20.78
			MA(2) = -0.42 (0.00)			
		(7,2,1)	AR(7) = 0.27(0.01)	0.39	20.71	20.79
			MA(1) = -0.72(0.00)			
		(7,2,7)	AR(7) = 0.88(0.00)	0.14	21.05	21.13

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

			MA(7) = 0.91(0.00)			
Karnataka	14 14(0.00)	(1 2 1)	AR(1) = -0.91(0.00)	0.16	18 20	18 37
Kaillataka	I(2) No	(1,2,1)	MA(1) = -0.29(0.20) MA(1) = -0.14(0.54)	0.10	10.29	10.57
	1(2) 110	(5.2.1)	$\mathbf{AP(5)} = 0.14 \ (0.34)$	0.40	17.00	18.07
		(3,2,1)	MA(1) = -0.59(0.00)	0.40	17.99	10.07
		(5 2 5)	AP(5) = 0.70(0.02)	0.10	18 20	18 37
		(3,2,3)	MA(5) = 0.70(0.02) MA(5) = -0.29(0.42)	0.19	10.29	10.57
		(5, 2, 7)	AR(5) = -0.45(0.00)	0.18	18 30	18 38
		(3,2,7)	MA(7) = 0.10(0.00)	0.10	10.50	10.50
Kerala	-3.05(0.05)	(1 2 1)	AR(1) = 0.10(0.00)	0.07	18.82	18.90
Refata	I(2)	(1,2,1)	MA(1) = 0.12(0.07) MA(1) = -0.46(0.08)	0.07	10.02	10.70
	1(2)	(7, 2, 1)	AR(7) = 0.69(0.00)	0.38	18/18	18 56
		(7,2,1)	MA(1) = -0.52(0.00)	0.50	10.40	10.50
		(1 2 7)	AR(1) = -0.40(0.00)	0.29	18 56	18.64
		(1,2,7)	MA(7) = 0.53(0.00)	0.27	10.50	10.04
Andhra	-3 65(0.05)	(1 2 1)	AR(1) = 0.13(0.75)	0.02	17.01	17 10
Pradesh	I(2)	(1,2,1)	MA(1) = -0.36(0.37)	0.02	17.01	17.10
Tradesh	1(2)	(122)	AR(1) = -0.19(0.06)	0.03	17.01	17.09
		(1,2,2)	MA(2) = -0.13(0.00) MA(2) = -0.13(0.19)	0.05	17.01	17.07
		(422)	AR(4) = 0.115(0.15)	0.12	16.94	17.02
		(1,2,2)	MA(2) = -0.07(0.45)	0.12	10.71	17.02
		(4 2 4)	AR(4) = 0.75(0.00)	0.13	16.92	17.01
		(4.2,4)	MA(4) = -0.33(0.34)	0.15	10.72	17.01
		(7.2.10)	AR(7) = 0.62(0.00)	0.19	16.88	16.97
		(7,2,10)	MA(10) = 0.02(0.00) MA(10) = 0.41(0.01)	0.17	10.00	10.77
		(11.2.10)	AR(11) = 0.63(0.00)	0.13	17.01	17.09
		(11,=,10)	MA(10) = 0.24(0.15)	0110	17101	17107
Tamil Nadu	-4.05(0.01)	(2,2,2)	AR(2) = 0.99(0.00)	0.26	15.45	15.53
	I(2)		MA(2) = -0.95(0.00)			
		(2,2,7)	AR(2) = 0.33(0.00)	0.16	15.57	15.65
			MA(7) = 0.21(0.05)			
		(7,2,2)	AR(7) = 0.41(0.00)	0.19	15.58	15.66
			MA(2) = 0.22(0.03)			
		(7,2,7)	AR(7) = 0.98(0.00)	0.31	15.42	15.50
			MA(7) = -0.88(0.00)			
Gujarat	-5.17(0.00)	(2,2,2)	AR(2) = 0.73(0.00)	0.05	15.47	15.55
-	I(2)		MA(1) = -0.52(0.05)			
		(6,2,2)	AR(6) = -0.52(0.00)	0.12	15.44	15.52
			MA(2) = -0.32(0.00)			
		(2,2,6)	AR(2) = 0.20(0.05)	0.14	15.38	15.46
			MA(6) = 0.36(0.00)			
		(11, 2, 11)	AR(11)=-0.43(0.00)	0.18	15.43	15.52
			MA(11)=0.89(0.00)			
		(11, 2, 6)	AR(11)=0.25(0.02)	0.16	15.46	15.54
			MA(6)=0.40(0.00)			
Uttar Pradesh	-3.65(0.05)	(3,2,3)	AR(3)=0.65(0.01)	0.12	17.62	17.70
	I(2)		MA(3)=-0.31(0.30)			
		(3,2,6)	AR(3)=0.30(0.00)	0.19	17.55	17.63
			MA(6)= 0.32(0.00)			
		(6,2,3)	AR(6)=0.47(0.00)	0.19	17.57	17.66

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

			MA(3) = 0.28(0.01)			
		(8,2,3)	AR(8)=0.39(0.00)	0.15	17.65	17.73
			MA(3)=0.17(0.12)			
		(8,2,6)	AR(8)=0.36(0.00)	0.19	17.60	17.68
			MA(6) = 0.29(0.01)			
		(8,2,10)	AR(8)=0.28(0.01)	0.22	17.56	17.65
			MA(10)=-0.84(0.00)			
West Bengal	-6.55(0.00)	(1,2,1)	AR(1)=0.93(0.00)	0.38	14.26	14.34
U U	I(2)		MA(1)=-0.66(0.00)			
		(2,2,1)	AR(2)=0.38(0.00)	0.29	14.41	14.50
			MA(1)=0.37(0.00)			
		(3,2,1)	AR(3)=0.47(0.00)	0.31	14.38	14.46
			MA(1)=0.20(0.05)			
		(7,2,7)	AR(7)=0.93(0.00)	0.28	14.47	14.55
			MA(7) = -0.91(0.00)			
		(7,2,1)	AR(7)=0.38(0.00)	0.28	14.46	14.55
			MA(1)=0.33(0.00)			
Rajasthan	-3.97(0.00)	(2,2,2)	AR(2)=0.61(0.00)	0.19	15.09	15.17
5	I(2)		MA(2)=-0.19(0.36)			
		(2,2,3)	AR(2)=0.45(0.00)	0.20	15.07	15.15
			MA(3)=0.14(0.19)			
		(7,2,2)	AR(7)=0.25(0.02)	0.19	15.14	15.22
			MA(2)=0.42(0.00)			
Delhi	-9.54(0.00)	(3,2,3)	AR(3)=0.43(0.20)	0.06	17.49	17.57
	I(2)		MA(3)=-0.14(0.68)			
		(3,2,7)	AR(3)=0.29(0.00)	0.10	17.44	17.52
			MA(7)=0.21(0.04)			
		(7,2,3)	AR(7)=0.29(0.01)	0.10	17.49	17.58
			MA(3)=0.20(0.06)			
		(7,2,7)	AR(7)=0.54(0.22)	0.05	17.54	17.63
			MA(7)=-0.24(0.59)			
		(2,2,9)	AR(2)=0.13(0.22)	0.02	17.51	17.60
			MA(9)=-0.33(0.00)			
		(7,2,9)	AR(7)=0.35(0.00)	0.11	17.48	17.56
			MA(9)=-0.40(0.00)			

Note: Bold marks indicate significant results and the accepted ARIMA structures for which forecasting are made.

Source: Computed by the author

The appropriate ARIMA model for India is derived as ARIMA (14,2,7) where 14 stands for the order of AR chosen from ACF, 2 is the order of integration that is the series is stationary at its second difference, and 7 stands for the order of MA chosen from the PACF. The model gives maximum adjusted R^2 value and lowest AIC and SIC values. All other possible models are there but they are not as best as ARIMA (14,2,7). It is to further describe ARIMA (14,2,7) as the 14th lag in the historical values of the number of cases (xt in the equations) in AR and 7th lag in MA of the respective series for the error term (μ) are significant out of the 99 values in the series. For all the states, the bold marked indicate significant results

and the accepted ARIMA structures for which predictions for the number of cases are made. For example, the appropriate model for Maharashtra is ARIMA (7, 2, 1).

TABLE 2. UNIT ROOT TEST AND ARIMA RESULTS FOR NUMBER OF DEATHS

Groups	ADF	Possible	Regression Co-effs.		AIC	SIC
•		forms of	(Prob)	$\bar{\mathbf{R}}^2$		
		ARIMA		-		
India	-4.39 (0.00)	(3,2,3)	AR(3) = 0.61 (0.05)	0.04	12.60	12.68
	I(2)		MA(3) = -0.38(0.28)			
		(3,2,7)	AR(3) = 0.16 (0.05)	0.25	12.35	12.43
			MA(7) = 0.53(0.00)			
		(7,2,3)	AR(7) = 0.56 (0.00)	0.25	12.38	12.47
			MA(3) = 0.07(0.52)			
		(7,2,7)	AR(7)=0.55(0.01)	0.25	12.39	12.47
			MA(7)= 0.03(0.82)			
Maharash	-3.44(0.01)	(1,2,1)	AR(1) = 0.11 (0.54)	0.19	11.87	11.95
tra	I(2)		MA(1) = -0.62 (0.00)			
		(1, 2, 2)	AR(1) = -0.54(0.00)	0.20	11.86	11.94
			MA(2) = -0.42 (0.00)			
		(7,2,1)	AR(7) = 0.55(0.00)	0.37	11.69	11.77
		-	MA(1) = -0.55(0.00)			
		(7,2,7)	AR(7) = -0.16(0.14)	0.30	11.78	11.86
			MA(7) = 0.88(0.00)			
Karnatak	-15.66(0.00)	(1,2,1)	AR(1) = -0.32 (0.19)	0.14	9.86	9.94
а	I(2)		MA(1) = -0.09 (0.72)			
		(2,2,1)	AR(2) = 0.16(0.15)	0.14	9.87	9.95
		-	MA(1) = -0.40(0.00)			
		(6,2,1)	AR(6) = 0.48 (0.01)	0.18	9.87	9.95
			MA(1) = -0.37(0.42)			
		(1,2,9)	AR(1) = -0.40 (0.00)	0.15	9.85	9.93
			MA(9) = 0.11 (0.00)			
Kerala	-15.34(0.05)	(1,2,1)	AR(1) = -0.22 (0.31)	0.18	5.62	5.70
	I(2)		MA(1) = -0.27 (0.22)			
		(1,2,7)	$AR(1) = -0.44 \ (0.00)$	0.17	5.63	5.71
			MA(7) = 0.10 (0.00)			
		(1,2,11)	AR(1) = -0.42 (0.00)	0.20	5.59	5.67
			MA(11) = 0.24 (0.04)			
		(11,2,1)	AR(11) = 0.31 (0.01)	0.22	5.65	5.73
			MA(1) = -0.47 (0.00)			
		(11, 2, 11)	AR(11) = -0.43 (0.00)	0.14	5.74	5.83
			MA(11) = 0.84 (0.00)		_	
Andhra	-3.35(0.05)	(1,2,1)	AR(1) = -0.31 (0.12)	0.24	6.33	6.41
Pradesh	1(2)		MA(1) = -0.24 (0.24)			6.4.7
		(1,2,7)	AR(1) = -0.48 (0.00)	0.41	6.07	6.15
			MA(7) = 0.56(0.00)			
		(7,2,1)	AR(7) = 0.64(0.00)	0.46	6.04	6.13
			MA(1) = -0.59(0.00)			
		(7.2,7)	AR(7)=0.08(0.69)	0.23	6.39	6.48

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

			MA(7) = 0.50(0.00)			
Tomil	2.55(0.05)	(2.2.2.)	MA(7)=0.59(0.00)	0.14	7 1 4	7.00
I amii Na da	-3.33(0.05)	(3,2,3)	AK(3) = 0.89(0.00) MA(3) = 0.80(0.00)	0.14	/.14	1.22
Nadu	1(2)	(2,2,0)	MA(3) = -0.80(0.00)	0.11	7 17	7.05
		(3,2,0)	AK(5) = 0.22(0.05)	0.11	/.1/	1.25
		((2))	MA(0) = 0.55(0.01)	0.14	7.16	7.05
		(0,2,3)	AK(0) = 0.51(0.00) MA(2) = 0.21(0.05)	0.14	/.10	1.25
		(2,2,8)	MA(3) = 0.21(0.03)	0.04	7.24	7 20
		(2,2,8)	AR(2) = 0.009(0.94) MA(2) = 0.40(0.01)	0.04	7.24	1.52
		(8.2.2)	$MA(\delta) = 0.40(0.01)$	0.02	7.20	7 20
		(8,2,2)	$AR(\delta) = 0.3\delta(0.02)$ MA(2) = 0.01(0.80)	0.05	7.50	1.58
		(8 2 8)	MA(2) = -0.01(0.03)	0.02	7.20	7 29
		(0,2,0)	AR(8) = 0.33(0.33) MA(8) = 0.02(0.96)	0.05	7.50	7.50
Guiarat	-3.26(0.02)	(222)	$\Delta R(2) = 0.58(0.00)$	0.28	5.88	5.96
Oujarat	I(2)	(2,2,2)	MA(2) = 0.38(0.00) MA(2) = -0.05(0.79)	0.20	5.00	5.70
	1(2)	(622)	AR(6) = 0.14(0.22)	0.24	5.98	6.06
		(0,2,2)	MA(2) = 0.46(0.00)	0.24	5.70	0.00
		(1422)	AR(14) = -0.14(0.34)	0.24	6.07	616
		(11,2,2)	MA(2) = 0.49(0.00)	0.21	0.07	0.10
		(17. 2. 17)	AR(17) = 0.29(0.04)	0.18	6.18	6.27
		(17, 2, 17)	MA(17) = -0.82(0.00)	0.10	0.10	0.27
		(17, 2, 2)	AR(17) = -0.24(0.08)	0.25	6.09	6.18
		(1, , =, =)	MA(2) = 0.46(0.00)	0.20	0.07	0.10
Uttar	-11.32(0.05) I(2)	(1.2.1)	AR(1) = -0.30(0.67)	0.003	8.34	8.42
Pradesh		(-,-,-,	MA(1) = 0.15(0.83)			
		(1,2,7)	AR(1) = -0.22(0.02)	0.15	8.18	8.26
			MA(7) = 0.46(0.00)			
		(7,2,1)	AR(7)=0.60(0.00)	0.16	8.22	8.31
			MA(1)= -0.35(0.00)			
		(11,2,11)	AR(11)=0.99(0.00)	0.10	8.34	8.43
			MA(11)=-0.80(0.00)			
		(1,2,11)	AR(1)=-0.11(0.28)	0.08	8.25	8.33
			MA(11)= 0.52(0.00)			
		(11,2,1)	AR(11)=0.47(0.00)	0.08	8.36	8.45
			MA(1)=-0.09(0.37)			
West	-6.55(0.05) I(2)	(2,2,2)	AR(2) = 0.46(0.16)	0.06	5.69	5.77
Bengal			MA(2)=-0.17(0.61)			_
		(2,2,7)	AR(2)=0.12(0.26)	0.25	5.46	5.54
			MA(7)=0.55(0.00)			
		(7,2,2)	AR(7)=0.59(0.00)	0.27	5.45	5.54
			MA(2)=0.10(0.35)			
		(2,2,8)	AR(2)=0.24(0.00)	0.06	5.68	5.76
		(10.0.10)	MA(8)=0.19(0.13)	0.10		
		(10,2,10)	AR(10) = -0.21(0.14)	0.18	5.60	5.68
		(17.2.7)	MA(10)=0.80(0.00)	0.22	5 40	5.57
		(17,2,7)	AK(1/)=0.50(0.00)	0.32	5.48	5.57
Daiastha	11.21(0.00) 1(2)	(2.2.2)	MA(7) = 0.42(0.00)	0.02	6.96	6.04
Kajastnan	-11.21(0.00) 1(2)	(2,2,2)	AIX(2)=0.10(0.73) MA(2)=0.02(0.04)	0.02	0.80	0.94
		(222)	IVIA(2)=0.03(0.94)	0.07	6.01	6.00
		(2,2,3)	AK(2)=0.2/(0.00)	0.07	0.81	0.89

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

			MA(3)=0.27(0.01)			
		(3,2,2)	AR(3)=0.20(0.04)	0.06	6.83	6.91
			MA(2)=0.22(0.00)			
		(2,2,8)	AR(2)=0.19(0.04)	0.03	6.85	6.93
			MA(8)=0.14(0.16)			
		(2,2,15)	AR(2)=0.21(0.03)	0.05	6.83	6.91
			MA(15)=0.28(0.04)			
		(18,2,3)	AR(18)=0.41(0.01)	0.07	6.99	7.08
			MA(3)=0.24(0.03)			
Delhi	-3.10(0.02) I(2)	(4,2,4)	AR(4)=-0.03(0.93)	0.09	8.82	8.90
			MA(4)=0.40(0.24)			
		(4,2,7)	AR(4)=0.31(0.00)	0.14	8.76	8.84
			MA(7)=0.37(0.04)			
		(7,2,7)	AR(7)=0.40(0.24)	0.08	8.86	8.95
			MA(7)=0.06(0.86)			
		(15,2,4)	AR(15)=-0.64(0.00)	0.25	8.75	8.84
			MA(4)=0.46(0.00)			
		(15,2,7)	AR(15) = -0.61(0.00)	0.20	8.81	8.90
			MA(7)=0.34(0.01)			

Note: Bold marks indicate significant results and the accepted ARIMA structures for which forecasting are made.

Source: Computed by the author

Like Table 1, Table 2 gives the appropriate models of predictions for number of deaths in India and its states. The appropriate model for India is ARIMA (3, 2, 7) and ARIMA (7, 2, 1). The appropriate models for Maharashtra for both the number of cases and number of deaths are identical which indicate that both the series follow the same path and there is a balance between the two in terms of times and magnitudes of occurrence.

Step 4 of Predictions of the Number of Cases and Deaths

On the basis of the acceptable models obtained from Step 1 to 3 and presented in Table 1 and 2, predictions are made on these appropriate models of ARIMA. The predicted results are accepted on the basis of the desirable values of root mean square errors (RMSE), bias proportions, variance proportions and covariance proportions. Figure 1 and 2 present the graphical plots of predicted values of number of cases and number of deaths for India and Figure 6 and 7for the selected countries in respective ways. The numerical values of the forecasted series are given in the Appendix (Table A1 and A2).

It is observed from Figure 1 that there will be continuity in the rising trend of the number of cases for India during the period of prediction, May 11 - June 30, although the rate of increase will be diminishing day by day. The predicted number of cases in India is expected to reach 3.87 crore in June 30 with respect to 2.29 crore in May 10 which is around 1.5 crore higher in just a 51-day gap.

With respect to the predicted number of deaths in India it is evidenced from Figure 2 that it will reach 4.9 lacs in June 30 with respect to 2.5 lacs in May 10. There is a jump of around 100 % in case of death as predicted. Hence, the claim of one million death in India on August 1 by The Lancet (2021) may be justified if the rate of death continues in the same ratio throughout the period May 11-July 30. But, from the trend of new death rates for the period 01.02.2021-10.05.2021, it is observed that it started declining after May 8 (Figure 5), and hence, reaching one million death figures may be subject to further investigation.

Source: Drawn by the author

The possible causes for this increasing number of predicted cases and deaths may be very slow vaccination programme in India, besides the causes such as elections, religious programmes, government's failure in planning, etc. Up to May 10, around 15% of total India's population has been vaccinated. The good effect of vaccination has been proved right as the people over 60 years of age and the frontline health and administrative workers are affected in a very low rate (www.https://swachhindia.ndtv.com/).

Now come to the forecasting results of number of cases across the selected states in India. Figure 6 presents the data. All the states are showing increasing trends of predicted number of cases for the period 11.05.2021-30.06.2021. Maharashtra still remains in the top slot throughout the entire period of forecasting. Starting from 51.5 lacs on 11.05.2021, it is expected to reach 85.2 lacs on 30.06.2021, around 34 lacs more which is an 67% increase. The second to follow Maharashtra is Karnataka with a predicted number of cases of 54 lacs. The rate of increase in the predicted number of cases for both Maharashtra and Karnataka are almost similar.

Figure 6. Predicted Number of Cases for the States of India for May 11-June 30, 2021

Source: Drawn by the author from the derived results

Kerala is in the third slot and Tamil Nadu in the fourth slot. Gujarat and Rajasthan are at the bottom level in this regard. West Bengal, Andhra Pradesh and Delhi are expected to reach the same number of cases (around 24 lacs) in June 30.

Now come to the precited number of deaths across the states. Figure 7 presents the state-wise predicted data on the number of deaths. All the states are predicted to experience increasing death rates over the coming 51 days. Maharashtra is again at the top of the list. It starts with around 76 thousand in May 11 and ends up with 1.21 lacs deaths in June 30. The states to follow Maharashtra are Karnataka, Delhi and Uttar Pradesh. Karnataka is expected to reach the toll of around 52 thousand.

Figure 7. Predicted Number of Deathsfor the States of India for May 11-June 30, 2021

Source: Drawn by the author from the derived results

West Bengal is in the fifth position of the group with a predicted toll of around 23 thousand on June 30. Kerala stays at the bottom of the list with a predicted number of deaths of 10 thousand in the same time point.

Objective 2-Significance Tests for differences between Actual and Predicted Values

In order to test whether the mean differences of the predicted values are greater than that of the actual values for the number of cases and number of deaths we follow the student's t statistic. The mean and standard deviation (SD), mean differences and t values for both the level and growth forms are respectively given in Panel A and Panel B of Table 3.Panel A presents the results for the number of cases and Panel B the number of deaths. It is evident that the mean values of the actual scenario is much lesser that that of the predicted scenario for both the number of cases and deaths for India and its states except that, for Tamil Nadu, the number of predicted deaths is lesser than its number of actual deaths, putting thus a negative values before the calculated 't' statistic.

Panel A					
		Forecast			
	Actual Mean	Mean	Actual SD	Forecast SD	t(Forecast-
	(Cases)	(Cases)	(Cases)	(Cases)	Actual) Cases
India	13370750	31398700	3373655	4521746	25.10012784
Maharashtra	2921107	6724959	968709	1001605	22.27959565
Karnataka	1092455	3573249	246527	1027947	16.98495047
Kerala	1175804	3172149	224193	797369	17.52642807
Andhra					
Pradesh	942509	1825857	97243	308348	19.95378528
Tamil Nadu	934044	2618707	134726	871699	13.717523
Gujarat	347619	998497	116869	193974	21.99452588
Uttar					
Pradesh	749027	2379642	259162	579820	19.12368589
West Bengal	634150	1610934	107464	386050	17.71904904
Rajasthan	385089	1276126	115670	320509	19.21935572
Delhi	758212	1833772	201415	324269	21.63464332
Panel B					
	Actual Mean	Forecast	Actual SD	Forecast	t(Forecast-
	(Deaths)	Mean	(Deaths)	SD(Deaths)	Actual) Deaths
		(Deaths)			
India	170918	362944	23044	71713	18.63340914
Maharashtra	56624	97671	6692	13220	20.84044448
Karnataka	13120	34421	1470	9705	15.58277463
Kerala	4541	8019	509	1380	17.3936143
Andhra					
Pradesh	7367	11844	370	2016	15.7227138
Tamil Nadu	12912	11844	730	2016	-3.66259854

 TABLE 3. MEAN DIFFERENCE RESULTS FOR INDIA AND ITS STATES

 Band A

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

Gujarat	5033	12500	1114	2611	19.52727747
Uttar					
Pradesh	9594	24861	1693	5721	18.64097902
West Bengal	10517	17063	496	3145	14.77081191
Rajasthan	3119	10346	685	2881	17.66175455
Delhi	12036	29368	2229	6428	18.68474931

Note: The bold figures show statistically significant results at 1% level of significance.

Source: Author's calculations

It is also evident that the computed 't' values for India and its states are positive and significant at 1 % level of significance as noted in the bold marks. This means, the predicted number of cases and deaths for India and all its states (except Tamil Nadu in case of death) are much larger that their actual values. It is thus still an alarming scenario to India and its major states at least up to June 30, the end time point of the forecasting period. Tamil Nadu is expected of reducing its death rate significantly, although its number if cases will continue to be alarming.

DISCUSSION

Using the appropriate model of ARIMA in the B-J line of forecasting it is now evident that India and its ten highly affected states will be facing the gloomy scenario in the number of cases and deaths in the coming 51 days. The claim of The Lancet in this regard may not be justified at this juncture. Tamil Nadu is an exception with regard to the number of deaths. India will reach around 3.87 crore of number of cases and 4.9 lacs of death on June 30. Maharashtra will be the leader in the group keeping all the remaining states well behind in both the number of cases and deaths. It has been proved that after vaccination the older age people have been least affected in the second wave. Hence, effective and large-scale vaccination can save the people of the country from the ill effects of the second wave of the virus. But, the rate of vaccination in India and its states is very slow due to low level of production. In addition to that the country could not maintain the COVID protocol like physical distancing, use of masks and sanitizers, allowed public gatherings such as in religious places like KumbhMela, and long phase assembly elections in certain states. It also did not put restrictions upon traffic movements, and could not perceive the severity of the second-round effect of the virus. The country became complacent in this regard which paid a huge sum in terms of loss of lives, and increasing health costs. And finally, there was a massive policy failure on the part of the central as well as state governments of the country.

CONCLUSION

Venturing with two objectives the present study attempted to predict the number of cases and deaths for India and its leading states for the period May 11-Jume 30, 2021, and also to test whether the predicted values are greater than that of their actual values. Using the appropriate model of ARIMA in the B-J line of

forecasting it is derived that India and its ten highly affected states will be facing the gloomy scenario in the number of cases and deaths in the coming 51 days. Tamil Nadu is an exception with regard to the number of deaths. India will reach around 3.87 crore of number of cases and 4.9 lacs of death on June 30. Maharashtra will be the leader in the group keeping all the remaining states well behind in both the number of cases and deaths. Mass scale vaccination is recommended to save the people of country from the ill effects of the virus.

Conflict of Interests

In preparing the manuscript the author did not face any conflict of interests and did not use any such materials of others where such conflict would at all arise.

Funding Information

While doing the research and preparing the manuscript the author did not use funds of any government or private agencies of the world.

REFERENCES

Barreiro, L. (2016). Immune system of African-Americans, Cell, 167, 657–669. October 20

Bayyurt, L. and Bayyurt, B. (2020).Forecasting of COVID-19 cases and deaths using ARIMA models.medRxiv. https://doi.org/10.1101/2020.04.17.20069237 .

Box, G. E. P. and Jenkins, G. M. (1976). Time series analysis forecasting and control (2nd edition). San Francisco: Holden-Day

Curtis, N., Sparrow, A., Ghebreyesus, T. A., &Netea, M. G. (2020).Considering BCG vaccination to reduce the impact of COVID-19. The Lancet, April 30 https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31025-4/fulltext

Das, R. C. (2020). Forecasting incidences of COVID-19 using Box-Jenkins method for the period July 12-Septembert 11, 2020: A study on highly affected countries. Chaos, Solitons, and Fractals. Nov;140:110248. DOI: 10.1016/j.chaos.2020.110248

Dickey, D. A., and Fuller, W.A. (1979).Distribution of the estimators for autoregressive timeseries with a unit root, Journal of the American Statistical Association, 74.

Hernandez-Matamoros A, Fujita H, Hayashi T, Perez-Meana H (2020). Forecasting of COVID19 per regions using ARIMA models and polynomial functions. Applied Soft Computing, 96 10.1016/j.asoc.2020.106610

Hoch, M. (2010). Immune mechanism activated by hunger and stress, Life & Medical Sciences Institute in Bonn, Germany, https://www.dw.com/en/immune-mechanism-activated-by-hunger-and-stress-scientists-find/a-5310315

Malki, Z., Atlam, ES., Ewis, A. et al. (2021). ARIMA models for predicting the end of COVID-19 pandemic and the risk of second rebound. Neural Computing & Applications, 33, 2929–2948. https://doi.org/10.1007/s00521-020-05434-0

Raja, R. (2008). More immunity genes in Indians, Nature India, doi:10.1038/nindia.2008.254

Rao, V. V. (2020). India: The new global epicentre for COVID-19, National Herald, September 13, https://www.nationalheraldindia.com/

The Lancet (2021). Editorial-India's COVID-19 emergency, 397(10286), P1683, May 08

Appendix

					DICIEL		DER				
Forec	Indi	Maha	Kar	Ker	Andhra	Tami	Guj	Uttar	West	Raja	Del
ast	а	rashtr	nata	ala	Prades	1	ara	Prade	Beng	stha	hi
Date		ล	ka		h	Nadu	t	sh	ล่	n	
11-05-	233	51542	1987	193	130711	1409	692	15260	10128	7741	133
2021	444	17	582	566	5	747	311	58	45	67	658
2021	35	17	502	9	5	, . ,	511	50	10	0,	5
12-05-	237	52080	2040	197	132805	1439	703	15498	10327	7914	135
2021	237	18	314	663	7	858	182	85	76	25	254
2021	40	10	514	5	/	0.00	402	05	70	23	234
13.05	241	52638	2003	202	135107	1471	714	15743	10520	8087	136
2021	022	22030	2093	106	155197	14/1	714 550	13743	10329	0007	000
2021	022	33	085	100	9	108	550	97	51	01	999
14.05	1/	52012	0145	4	127442	1502	705	15000	10722	9964	2 129
14-05-	244	33213	2145	200	13/442	1505	725	15992	10/33	8204	138
2021	/14	28	275	600	/	304	582	13	72	61	690
17.07	85			1	100107	1 7 9 1			10010		3
15-05-	248	53769	2197	210	139405	1536	736	16251	10940	8444	140
2021	477	78	927	830	4	870	735	95	37	59	411
	42			7							7
16-05-	251	54337	2254	215	141545	1571	747	16484	11149	8625	142
2021	883	54	266	320	4	342	686	17	46	34	075
	64			6							3
17-05-	254	54886	2310	219	143851	1606	758	16745	11361	8807	143
2021	982	84	516	396	5	960	745	28	01	31	591
	58			7							8
18-05-	258	55451	2367	223	145744	1643	769	17013	11575	8989	145
2021	277	62	011	296	4	257	846	04	00	48	196
	98			3							2
19-05-	261	56024	2423	227	147744	1680	781	17300	11791	9172	146
2021	791	24	345	761	3	264	052	89	43	52	995
	79			9							4
20-05-	265	56606	2480	232	149910	1718	792	17610	12010	9357	148
2021	322	63	203	483	8	498	350	56	31	20	861
	68	00	-00	7	U U		220	00	01		1
21-05-	268	57197	2539	237	151991	1757	803	17925	12231	9544	150
2021	763	86	705	255	2	765	753	28	64	10	720
2021	79	00	105	9	2	105	155	20	01	10	9
22-05-	272	57788	2599	241	153900	1798	815	18243	12455	9733	152
2021	266	16	368	2 1 1 860	0	1790	258	96	12+33	22	604
2021	10	10	500	4	2	407	230	90	41	22	7
22.05	275	50205	2650	4 246	155029	1940	876	19560	12691	0022	/
25-05-	213	20202 76	2039	240	133928	1040	020	16309	12081	9923	134
2021	400	/0	414	000	4	203	808	00	02	91	481

TABLE A1. PREDICTED NUMBER OF CASES

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

	98			5							3
24-05-	278	58982	2719	251	158066	1883	838	18889	12910	1011	156
2021	405	44	574	188	9	154	581	49	28	632	318
	10			1							5
25-05-	281	59587	2780	255	159952	1926	850	19221	13141	1031	158
2021	512	58	298	608	2	870	399	18	38	016	200
	96			2							4
26-05-	284	60199	2842	260	161911	1971	862	19557	13374	1050	160
2021	806	09	982	437	2	384	321	87	93	562	165
	06	0,	/01	1	-	00.	021	0,	10	002	1
27-05-	288	60817	2905	265	163981	2017	874	19903	13610	1070	162
2021	118	48	992	459	5	212	347	33	92	289	167
2021	81	10	<i>,,,</i>	3	5	212	517	55	/2	207	0
28-05-	291	61442	2969	270	166004	2064	886	20258	13849	1090	164
20 05	358	51	473	531	2	159	478	07	35	212	180
2021	95	51	775	8	2	157	770	07	55	212	0
20.05	20/	62071	3033	275	167026	2112	808	20617	1/000	1110	166
29-05-	653	47	250	502	0	640	714	20017	22	221	214
2021	23	4/	230	0	0	049	/14	55	23	551	214 8
20.05	207	62706	2007	280	160028	2162	011	20080	1/222	1120	0
2021	297 606	62700	5097 610	200 625	109920	2102	911	20980	14555	620	260
2021	090	05	019	023	3	219	034	0/	33	030	200
21.05	41	(2245	2162	3	172007	2212	022	01240	14570	1151	4
31-05-	500	63345	3103	285	1/2007	2213	923	21349	14579	1151	1/0
2021	525	12	495	5/3	2	108	498	31	31	112	305
01.06	61	62001	2220	4	172022	2264	0.2.6	21710	14007	1171	1
01-06-	303	63991	3229	290	173933	2264	936	21719	14827	11/1	172
2021	495	35	807	462	3	852	047	55	52	769	379
	60			0							2
02-06-	306	64642	3296	295	175912	2317	948	22096	15078	1192	174
2021	628	91	649	650	2	482	700	08	16	607	496
	08			0							1
03-06-	309	65300	3363	300	177967	2371	961	22477	15331	1213	176
2021	776	58	906	987	6	511	458	14	25	631	639
	88			7							5
04-06-	312	65964	3431	306	179999	2426	974	22863	15586	1234	178
2021	865	26	772	375	5	747	321	80	79	844	800
	48			6							2
05-06-	316	66633	3500	311	181974	2483	987	23256	15844	1256	180
2021	001	22	850	708	6	612	287	18	76	247	981
	98			2							9
06-06-	318	67308	3570	317	184006	2541	100	23652	16105	1277	183
2021	925	08	434	161	8	644	035	96	18	835	180
	99			2			8				8
07-06-	321	67988	3640	322	186093	2601	101	24054	16368	1299	185
2021	667	21	587	508	5	081	353	06	03	608	392
	36			3			4				7
08-06-	324	68674	3711	327	188090	2661	102	24459	16633	1321	187
2021	533	34	233	829	8	460	681	66	33	566	628
	64			2			4				3
09-06-	327	69366	3782	333	190127	2722	104	24868	16901	1343	189
2021	536	30	501	373	8	813	019	88	08	710	892

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

	68			6			9				5
10-06-	330	70064	3854	339	192219	2785	105	25283	17171	1366	192
2021	557	13	785	037	4	652	368	00	26	040	179
	87			2			8				5
11-06-	333	70767	3927	344	194302	2849	106	25701	17443	1388	194
2021	531	81	622	751	7	784	728	51	89	557	485
	15			0			1				9
12-06-	336	71477	4001	350	196356	2915	108	26124	17718	1411	196
2021	547	14	054	441	8	630	097	71	95	263	813
	29			5			9				1
13-06-	339	72192	4075	356	198453	2982	109	26552	17996	1434	199
2021	387	29	031	231	4	730	478	65	46	155	159
	69			0	-		2				7
14-06-	342	72913	4149	361	200590	3051	110	26984	18276	1457	201
2021	077	09	636	962	7	322	868	95	41	234	524
	51	0,	000	1		022	8	20		-0.	3
15-06-	344	73639	4225	367	202678	3120	112	27421	18558	1480	203
2021	875	73	130	690	3	943	270	58	80	499	910
2021	10	15	150	2	5	715	0	50	00	177	6
16-06-	347	74372	4301	373	204797	3191	113	27862	18843	1503	206
2021	791	17	208	588	4	625	681	59	63	951	320
2021	72	17	200	9	т	025	6	57	05	<i>))1</i>	320 4
17-06-	350	75110	4377	379	206957	3263	115	28307	19130	1527	208
2021	724	42	898	585	3	879	103	20307	91	590	751
2021	11	72	070	8	5	017	6	15	71	570	6
18-06-	353	75854	4455	385	209118	3337	116	28757	19420	1551	211
2021	617	48	165	632	5	512	536	40	62	416	203
2021	47	10	105	7	5	512	1	10	02	110	0
19-06-	356	76604	4533	, 391	211267	3412	117	29211	19712	1575	213
2021	549	28	067	678	9	946	979	40	78	430	675
2021	23	20	007	7	,	210	0	10	10	150	2
20-06-	359	77359	4611	, 397	213450	3489	119	29669	20007	1599	216
2021	332	88	773	808	4	720	432	85	37	630	167
2021	90	00	115	7		120	3	05	57	050	6
21-06-	361	78121	4691	403	215665	3568	120	30132	20304	1624	218
2021	989	24	083	913	1	072	896	75	41	018	679
2021	86	21	005	4	1	072	1	15		010	6
22-06-	364	78888	4771	410	217855	3647	122	30600	20603	1648	221
2021	740	39	016	031	0	540	370	00	89	592	212
2021	36	57	010	3	0	510	4	00	07	572	7
23-06-	367	79661	4851	416	220071	3728	123	31071	20905	1673	223
2021	592	3/	5/19	282	3	156	855	58	81	354	767
2021	88	54	547	9	5	150	1	50	01	554	5
24-06-	370	80440	/032	122	222319	3810	125	31547	21210	1698	226
2021	462	08	720	618	7	429	350	52	17	302	343
2021	50		120	0	'	727	2	52	1,	502	2
25-06	373	81224	5014	120	22/1575	380/	126	32027	21516	1723	228
2021	301	61	630	003	1	160	855	75	97	138	030
2021	80	01	037	2	+	107	8	15	21	430	235 4
26-06-	376	82014	5097	435	226830	3979	128	32512	21826	1748	231
20-00-	176	02014	176	402	220050	70/	371	36	21020	761	556
2021	1/0	74	1/0	-+UJ	4	174	5/1	50	<i>LL</i>	701	550

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

	06			0			9				3
27-06-	378	82811	5180	441	229112	4066	129	33001	22137	1774	234
2021	928	02	343	876	4	846	898	31	90	271	193
	46			4			4				7
28-06-	381	83612	5264	448	231421	4155	131	33494	22452	1799	236
2021	577	90	125	347	3	562	435	63	02	968	851
	11			4			3				4
29-06-	384	84420	5348	454	233721	4245	132	33992	22768	1825	239
2021	307	57	546	842	1	481	982	33	59	852	529
	03			8			7				9
30-06-	387	85234	5433	461	236044	4336	134	34494	23087	1851	242
2021	126	03	681	446	0	634	540	37	60	923	229
	28			5			5				4

TABLE A2. PREDICTED NUMBER OF DEATHS

Foreca st	In dia	Maha rashtr	Karn atak	Ke ral	Andhra Pradesh	Tamil Nadu	Guj ara	Uttar Prades	West Benga	Raja stha	De lhi
Date		a	а	a			t	h	1	n	
11-05-	249	76491	1927	58	8796	8796	851	15764	12454	5824	19
2021	999		3	83			7				62
											5
12-05-	253	77315	1976	59	8892	8892	864	16105	12583	5983	19
2021	940		9	53			3				90
											6
13-05-	257	78158	2027	60	8991	8991	877	16448	12712	6141	20
2021	888		2	23			0				21
14.05	261	70070	2070	60	0000	0000	000	1 (701	10040	(200	1
14-05-	261	/8968	2078	60	9082	9082	889	16/91	12849	6300	20
2021	891		0	94			9				50 0
15.05	266	70806	2121	61	0173	0173	002	17140	12086	6460	0
2021	200	79800	1	65	9175	9175	902 6	1/149	12960	0400	20 70
2021	077		1	0.5			0				5
16-05-	270	80629	2183	62	9281	9281	915	17463	13128	6621	21
2021	237		9	39			5				10
											1
17-05-	274	81295	2240	63	9386	9386	928	17777	13278	6784	21
2021	301		2	14			4				38
											9
18-05-	278	82003	2295	63	9490	9490	941	18095	13434	6949	21
2021	431		7	92			7				68
											6
19-05-	282	82815	2351	64	9599	9599	955	18440	13595	7115	21
2021	583		7	67			2				96
20.05	200	02641	2400	65	0710	0710	0.00	10700	10750	7202	3
20-05-	286	83641	2408	65	9/10	9/10	969	18/88	13750	7282	22
2021	/55		5	46			4				51
21.05	200	94450	2465	64	0816	0916	0.02.4	10126	12011	7451	1
21-05-	290	64452	2403	26	9810	9810	984	19130	13911	/451	22 60
2021	970		4	20			0				09

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

											6
22-05- 2021	295 221	85283	2523 0	67 07	9923	9923	999 2	19496	14077	7622	23 06 4
23-05- 2021	299 508	86108	2581 1	67 89	10041	10041	101 44	19830	14243	7794	23 43 5
24-05- 2021	303 834	86851	2639 8	68 72	10159	10159	103 01	20165	14417	7968	23 81 8
25-05- 2021	308 199	87621	2699 0	69 56	10275	10275	104 61	20504	14590	8144	24 24 6
26-05- 2021	312 603	88451	2758 7	70 39	10396	10396	106 23	20861	14772	8320	24 67 4
27-05- 2021	317 045	89292	2818 9	71 25	10518	10518	107 87	21221	14954	8499	25 10 9
28-05- 2021	321 527	90129	2879 7	72 11	10638	10638	109 52	21583	15139	8679	25 53 5
29-05- 2021	326 047	90980	2941 0	72 98	10759	10759	111 18	21953	15326	8861	25 97 1
30-05- 2021	330 606	91832	3002 8	73 86	10887	10887	112 86	22309	15514	9044	26 42 0
31-05- 2021	335 204	92642	3065 1	74 74	11016	11016	114 55	22667	15709	9229	26 86 3
01-06- 2021	339 841	93471	3128 0	75 64	11144	11144	116 27	23029	15903	9415	27 32 4
02-06- 2021	344 517	94336	3191 4	76 55	11275	11275	118 01	23404	16102	9603	27 78 5
03-06- 2021	349 232	95211	3255 3	77 46	11408	11408	119 76	23781	16307	9793	28 26 6
04-06- 2021	353 985	96087	3319 8	78 38	11540	11540	121 53	24161	16517	9984	28 70 2
05-06- 2021	358 778	96975	3384 7	79 31	11673	11673	123 30	24547	16730	1017 6	29 13 0
06-06- 2021	363 609	97866	3450 2	80 24	11812	11812	125 09	24926	16941	1037 1	29 56 9
07-06- 2021	368 480	98738	3516 2	81 19	11951	11951	126 88	25308	17156	1056 7	30 01

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

											3
08-06- 2021	373 389	99624	3582 8	82 14	12090	12090	128 68	25694	17376	1076 4	30 45 6
09-06- 2021	378 338	10053 3	3649 9	83 10	12232	12232	130 49	26088	17597	1096 3	30 87 6
10-06- 2021	383 325	10145 2	3717 5	84 07	12375	12375	132 32	26486	17823	1116 3	31 30 1
11-06- 2021	388 351	10237 5	3785 6	85 04	12518	12518	134 15	26887	18050	1136 6	31 72 9
12-06- 2021	393 416	10330 7	3854 2	86 02	12663	12663	136 00	27293	18284	1156 9	32 16 8
13-06- 2021	398 520	10424 5	3923 4	87 01	12811	12811	137 87	27696	18518	1177 4	32 60 7
14-06- 2021	403 663	10517 7	3993 1	88 01	12960	12960	139 76	28102	18756	1198 1	33 04 4
15-06- 2021	408 845	10611 9	4063 3	89 02	13110	13110	141 66	28511	18995	1219 0	33 49 1
16-06- 2021	414 065	10707 8	4134 1	90 03	13262	13262	143 57	28928	19237	1240 0	33 93 2
17-06- 2021	419 325	10804 5	4205 3	91 05	13415	13415	145 51	29348	19483	1261 1	34 37 9
18-06- 2021	424 624	10901 8	4277 1	92 08	13569	13569	147 45	29771	19730	1282 4	34 82 0
19-06- 2021	429 961	11000 1	4349 5	93 11	13724	13724	149 41	30199	19982	1303 9	35 29 6
20-06- 2021	435 338	11099 0	4422 3	94 16	13882	13882	151 39	30626	20237	1325 5	35 78 4
21-06- 2021	440 753	11197 9	4495 7	95 20	14041	14041	153 39	31057	20496	1347 3	36 27 0
22-06- 2021	446 207	11297 7	4569 6	96 26	14202	14202	155 40	31491	20759	1369 2	36 76 0
23-06- 2021	451 700	11398 8	4644 0	97 33	14363	14363	157 43	31931	21022	1391 3	37 25 6
24-06- 2021	457 232	11500 7	4719 0	98 40	14527	14527	159 48	32374	21288	1413 6	37 77

Das (2021). Asian Journal of Research in Social Sciences and Humanities, Vol. 11, No.6, pp. 1-27.

											4
25-06-	462	11603	4794	99	14691	14691	161	32820	21557	1436	38
2021	803	4	5	48			54			0	29
											4
26-06-	468	11706	4870	10	14856	14856	163	33271	21829	1458	38
2021	413	8	5	05			62			6	81
				6							9
27-06-	474	11811	4947	10	15024	15024	165	33723	22105	1481	39
2021	062	0	0	16			72			3	34
				6							2
28-06-	479	11915	5024	10	15193	15193	167	34178	22382	1504	39
2021	750	6	0	27			84			2	87
				6							1
29-06-	485	12021	5101	10	15363	15363	169	34637	22664	1527	40
2021	477	0	6	38			97			2	40
				7							9
30-06-	491	12127	5179	10	15535	15535	172	35101	22948	1550	40
2021	242	5	7	49			12			4	94
				8							6